Segmented helical structures formed by ABC star copolymers in nanopores.
نویسندگان
چکیده
Self-assembly of ABC star triblock copolymers confined in cylindrical nanopores is studied using self-consistent mean-field theory. With an ABC terpolymer forming hexagonally-arranged cylinders, segmented into alternative B and C domains, in the bulk, we observe the formation in the nanopore of a segmented single circular and non-circular cylinder, a segmented single-helix, and a segmented double-helix as stable phases, and a metastable stacked-disk phase with fourfold symmetry. The phase sequence from single-cylinder, to single-helix, and then to double-helix, is similar as that in the cylindrically-confined diblock copolymers except for the absence of an equilibrium stacked-disk phase. It is revealed that the arrangement of the three-arm junctions plays a critical role for the structure formation. One of the most interesting features in the helical structures is that there are two periods: the period of the B/C domains in the helix and the helical period. We demonstrate that the period numbers of the B/C domains contained in each helical period can be tuned by varying the pore diameter. In addition, it is predicted that the period number of B/C domains can be any rational in real helical structures whose helical period can be tuned freely.
منابع مشابه
Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micel...
متن کاملSelf-assembly of ABC star triblock copolymers under a cylindrical confinement.
Self-assembly of ABC star triblock copolymers confined in cylindrical nanopores is studied using real-space self-consistent mean-field theory. Specifically, the investigation focuses on the confined self-assembly of a triblock copolymer which forms hierarchical lamellae in the bulk. Generically, the hierarchical lamellae can be parallel or perpendicular to the pore surfaces. Concentric rings of...
متن کاملEmergence and Stability of Helical Superstructures in ABC Triblock Copolymers
The emergence and stability of superstructured cylindrical phases in frustrated ABC linear triblock copolymers are investigated by the self-consistent field theory. Our results reveal that the complex single/double/triple helices-on-cylinder phases are formed when the straight cylinders-on-cylinder and rings-oncylinder phases are frustrated due to packing constraints. A free energy comparison i...
متن کاملA strategy to explore stable and metastable ordered phases of block copolymers.
Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. A major challenge in the study of the phase behavior of block copolymers is to obtain different stable and metastable phases of the system. A strategy to discover complex ordered phases of block copolymers within the self-consistent field theory framework i...
متن کاملInsights into ordered microstructures and ordering mechanisms of ABC star terpolymers by integrating dynamic self-consistent field theory and variable cell shape methods.
A theoretical approach coupling dynamic self-consistent field (SCF) theory for inhomogeneous polymeric fluids and variable cell shape (VCS) method for automatically adjusting cell shape and size is developed to investigate ordered microstructures and the ordering mechanisms of block copolymer melts. Using this simulation method, we first re-examined the microphase separation of the simplest AB ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 138 10 شماره
صفحات -
تاریخ انتشار 2013